
EIGENVALUE EQUATION 



Eigenvalue equations 
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The Schrödinger Equation is the form of an Eigenvalue Equation:  EH ˆ

where Ĥ is the Hamiltonian operator, 

 

 is the wavefunction and is an eigenfunction of Ĥ; 

 

E is the total energy (T + V) and an eigenvalue of Ĥ. E is just a constant! 

 

Later in the course we will see that the eigenvalues of an operator give the 

possible results that can be obtained when the corresponding physical 

quantity is measured. 



Time Independent Schrodinger Equation (TISE) 
for a free-particle 
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For a free particle V (x) = 0 and TISE is: 

and has solutions 

Thus the full solution to the full TDSE is: 

Corresponds to waves travelling in either  x direction with:  

(i) an angular frequency,  = E / ћ   E = ћ !      

(ii) a wavevector, k = (2mE)1/2 / ћ = p / ћ  p = h /  !     

  

WAVE-PARTICLE DUALITY! 



Interpretation 
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As mentioned previously the TDSE has solutions that are inherently complex 

 (x,t) cannot be a physical wave (e.g. electromagnetic waves). Therefore 

how can  (x,t) relate to real physical measurements on a system? 

The Born Interpretation 

* is real as required for a probability distribution and is the probability per 

unit length (or volume in 3d).  

The Born interpretation therefore calls  the probability amplitude, * (= 

P(x,t) ) the probability density and * dx the probability. 

Probability of finding a particle in a small length dx at position x and time t is 

equal to 



Expectation values 
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Thus if we know (x, t) (a solution of TDSE), then knowledge of * dx allows the 

average position to be calculated: 

In the limit that x 0 then the summation becomes: 

Similarly 

The average is also know as the expectation value and are very important in quantum 

mechanics as they provide us with the average values of physical properties because in 

many cases precise values cannot, even in principle, be determined – see later. 



Normalisation 
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Total probability of finding a particle anywhere must be 1: 

This requirement is known as the Normalisation condition. (This condition arises 

because the SE is linear in  and therefore if  is a solution of TDSE then so is c 

where c is a constant.) 

Hence if original unnormalised wavefunction is (x,t), then the normalisation integral is: 

And the (re-scaled) normalised wavefunction  norm = (1/N) . 

Example 1: What value of N normalises the function N x (x  L) of 0  x  L?  

Example 2: Find the probability that a system described by the function 21/2sin (x) where 

0  x  1 is found anywhere in the interval 0  x  0.25. 



Boundary conditions for  

In order for  to be a solution of the Schrödinger equation to represent a physically 
observable system,  must satisfy certain constraints: 

1. Must be a single-valued function of x and t; 

2. Must be normalisable; This implies that the   0 as x  ; 

3.  (x) must be a continuous function of x; 

4. The slope of  must be continuous, specifically d (x)/dx must be 

continuous (except at points where potential is infinite).  
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Stationary states 
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Earlier in the lecture we saw that even when the potential is independent of time the 

wavefunction still oscillates in time: 

Solution to the full TDSE is: 

But probability distribution is static: 

Thus a solution of the TISE is known as a Stationary State. 



What other information can you get from ? 
(and how!) 

)(
2

2
ˆ

2

2

xV
dx

d

m
H 



.ˆ
xi

px






nnnnnnnnn

nnn

ExExExH

EH






 dddˆ

ˆ





  xnn dˆ

We have seen how we can use the probability distribution  to calculate the 

average position of a particle. What happens if we want to calculate the average 

energy or momentum because they are represented by the following differential 

operators: 

Do the operators work on , or on , or on  alone? 

Take TISE and multiply from 

left by  and integrate:  

NB  is normalised. 

Suggest that in order to calculate the 

average value of the physical quantity 

associated with the QM operator we 

carry out the following integration: 



Momentum and energy expectation values 
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is the operator for the x component of momentum.  

Example: Derive an expression for the average 

energy of a free particle.  m
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Since V = 0 the expectation value for energy for a particle moving in one 

dimension is  
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The expectation value of momentum involves the representation of momentum as a 

quantum mechanical operator: 


